AAS 03-190 Conformal Mapping among Orthogonal, Symmetric, and Skew-Symmetric Matrices

نویسنده

  • Daniele Mortari
چکیده

This paper shows that Cayley Transforms, which map Orthogonal and SkewSymmetric matrices, may be considered the extension to matrix field of the complex conformal mapping function f1(z) = 1− z 1 + x . Then, by using a set of real matrices which are, simultaneously, Orthogonal and Symmetric (the Ortho−Sym matrices), it similarly shows how to extend two complex conformal mapping functions (namely, the f2(z) = i− z i + z , and the f3(z) = 1− z 1 + z i here called the clockwise, and the counter clockwise functions), to matrix field. This extension consists of some new one-to-one mapping relationships between Orthogonal and Symmetric, and between Symmetric and Skew-Symmetric matrices. This new relationships complete the picture of the one-to-one matrix mapping among Orthogonal, Symmetric, and SkewSymmetric matrices. Finally, this paper shows how to map among Orthogonal, Symmetric, and Skew-Symmetric matrices, by means of a direct product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

On the Rigid Rotation Concept in n-Dimensional Spaces∗

A general mathematical formulation of the n × n proper Orthogonal matrix, that corresponds to a rigid rotation in n-dimensional real Euclidean space, is given here. It is shown that a rigid rotation depends on an angle (principal angle) and on a set of (n−2) principal axes. The latter, however, can be more conveniently replaced by only 2 Orthogonal directions that identify the plane of rotation...

متن کامل

On Some Properties and Estimation of a Skew Symmetric Density Function

 In this paper we consider a general setting of skew-symmetric distribution which was constructed by Azzalini (1985), and its properties are presented. A suitable empirical estimator for a skew-symmetric distribution is proposed. In data analysis, by comparing this empirical model with the estimated skew-normal distribution, we show that the proposed empirical model has a better fit in den...

متن کامل

The Factorization of a Matrix as the Commutator of Two Matrices

Let P = f" + (I ,,) , the direct sum of the p x p identity matrix and the negative of the q x q ident ity matrix. The fo llowing theorem is proved. TH EOHEM: If X = cZ where Z is a 4 x 4 P-orthogonal , P-skew-symmetric matrix and Ie I .;;; 2, there exist matrices A an.d B, both of which are P-orthogollal and P-skew-symmetric, sach that X = AB BA. Methods for o btaining certain matrices which sa...

متن کامل

Extending Results from Orthogonal Matrices to the Class of P -orthogonal Matrices

We extend results concerning orthogonal matrices to a more general class of matrices that will be called P -orthogonal. This is a large class of matrices that includes, for instance, orthogonal and symplectic matrices as particular cases. We study the elementary properties of P -orthogonal matrices and give some exponential representations. The role of these matrices in matrix decompositions, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003